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Statistics of atmospheric correlations
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For a large class of quantum systems, the statistical properties of their spectrum show remarkable agreement
with random matrix predictions. Recent advances show that the scope of random matrix theory is much wider.
In this work, we show that the random matrix approach can be beneficially applied to a completely different
classical domain, namely, to the empirical correlation matrices obtained from the analysis of the basic atmo-
spheric parameters that characterize the state of atmosphere. We show that the spectrum of atmospheric
correlation matrices satisfy the random matrix prescription. In particular, the eigenmodes of the atmospheric
empirical correlation matrices that have physical significance are marked by deviations from the eigenvector
distribution.
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I. INTRODUCTION

The study of random matrix ensembles has brought i
great deal of insight in several fields of physics ranging fr
nuclear, atomic and molecular physics, quantum chaos
mesoscopic systems@1#. The interest in random matrice
arose from the need to understand the spectral propertie
the many-body quantum systems with complex interactio
With general assumptions about the symmetry propertie
the system dictated by quantum physics, random ma
theory ~RMT! provides remarkably successful predictio
for the statistical properties of the spectrum, which have b
numerically and experimentally verified in the last few d
cades@2#. In recent times, it has been realized that the fl
tuation properties of low-dimensional systems, e.g., cha
quantum systems, are universal and can be modeled b
appropriate ensemble of random matrices@3#. From its ori-
gins in quantum physics of high-dimensional systems,
scope of RMT is further widening with the new approach
based on supersymmetry methods@4# and applications in
seemingly disparate fields like quantum chromodynam
@5#, two-dimensional quantum gravity@6#, conformal field
theory@1# and even financial markets@7#. Thus, random ma-
trix techniques have potential applications and utility in d
ciplines far outside of quantum physics. In this paper,
show that the empirical correlation matrices that arise in
mospheric sciences can also be modeled as a random m
chosen from an appropriate ensemble.

The correlation studies are elegantly carried out in
matrix framework. The empirical correlation matrices ar
in a multivariate setting in various disciplines, for instanc
in the analysis of space-time data in general problems
image processing and pattern recognition, in particular,
image compression and denoising@8#—the weather and cli-
mate data are frequently subjected to principal compon
analysis to identify the independent modes of atmosph
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variability @9#—and in the study of financial assets and po
folios through the Markowitz’s theory of optimal portfolio
@10#. Most often, the analysis performed on the correlat
matrices is aimed at separating the signal from ‘‘noise,’’ i.
to cull the physically meaningful modes of the correlati
matrix from the underlying noise. Several methods based
Monte Carlo simulations have been used for this purp
@11#. The general premise of such methods is to simul
‘‘noise’’ by constructing an ensemble of matrices with ra
dom entries drawn from specified distributions, and the s
tistical properties of its eigenvalues like the level densi
etc., are compared with that of the correlation matrices. E
as the Monte Carlo techniques become computationally
pensive beyond a point, asymptotic formulations take ov
The deviations from ‘‘pure noise’’ assumptions are inte
preted as signals or symptoms of physical significance. In
context of the atmospheric sciences, empirical correlat
matrices are widely used, for example, to study the la
scale patterns of atmospheric variability. If the random m
trix techniques are valid for a correlation matrix, it might b
useful as a tool to separate the signal from the noise, w
lesser computational expense than with methods base
Monte Carlo techniques. We show that RMT prediction f
eigenvector distribution has potential application in this
rection for atmospheric correlation matrices.

II. CORRELATIONS AND TELECONNECTIONS

The state of the atmosphere is governed by the class
laws of fluid motion and exhibits a great deal of correlatio
in various spatial and temporal scales. These correlations
crucial to understand the short and long term trends in
mate. Generally, atmospheric correlations can be recogn
from the study of empirical correlation matrices construc
using the atmospheric data. Most significant correlations
documented as teleconnection patterns, i.e., the simultan
correlations in the fluctuations of the large scale atmosph
parameters at widely separated points on the earth. T
could be thought of as the dominant modes of atmosph
variability. Wallace and Gutzler have surveyed the ent
northern hemisphere teleconnections and show that
dominant eigenmodes of the correlation matrices, in m

ge,
s:
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FIG. 1. The NAO pattern from
the EOFs of monthly mean SLP
correlation matrix with the geo-
graphical map of the domain o
analysis in the background. Th
contours are drawn after averag
ing over the first two dominant
EOFs. Note the north-south dipol
shown as closed contours, in mi
Atlantic ~dotted contour! and over
Greenland~solid contours!.
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cases, reflect these teleconnection patterns@12#. For instance,
the North Atlantic oscillation~NAO! @13# refers to the ex-
change of the atmospheric mass between the Green
Iceland region and the regions of North Atlantic ocean
tween 35° N and 40° N and is characterized by a no
south dipole pattern as shown in Fig. 1. It is known that
NAO is associated with anomalous weather patterns in e
ern U.S. and northern Europe including Scandinavia@14#.
Such dominant modes need not always have to be a tele
nection. For example, the pattern in Fig. 2 can be identifi
with the annual trade wind fluctuations in the equatorial P
cific region, obtained as a dominant eigenmode from
analysis of the pseudo-wind-stress vectors. In subseq
sections, we will perform statistical analysis on the spectra
atmospheric correlation matrices, whose dominant mo
display correlation patterns discussed above. Atmosph
correlations are interesting to study from a RMT perspec
because they arise naturally from known physical inter
tions and offer instances to verify two~orthogonal and uni-
tary! of the three Gaussian ensembles of RMT.

Empirical orthogonal functions

The empirical orthogonal function~EOF! method, also
called the principal component analysis, is a multivariate s
tistical technique widely used in the analysis of geophys
data @9#. It is similar to the singular value decompositio
employed in linear algebra and it provides information ab
the independent modes of variabilities exhibited by the s
tem.
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In general, any atmospheric parameterz(x,t) ~like wind
velocity, geopotential height, temperature, etc.! varies with
spacex and timet and is assumed to follow an average tre
on which the variations~or anomalies as referred to in atmo
spheric sciences! are superimposed, i.e.,z(x,t)5zavg(x)
1z8(x,t). The wind vectors can be represented as a comp
numberseiu wheres is the wind speed andu the direction.
Thus, in general,z(x,t) could be a complex number. Th
mathematical treatment of complex correlations and EOF
given in Ref. @15#. In further analysis, the standardize
anomaly z8(x,t) will be used that will have zero mea
@z8(x)50# and is rescaled such that its variance^z8(x)2& is
unity. If the observations were takenn times at each of thep
spatial locations and the corresponding anomaliesz8(x,t) as-
sembled in the data matrixZ of orderp3n, then the spatial
correlation matrix of the anomalies is given by

S5
1

n
ZZ†. ~2.1!

Note that the elements of the Hermitian matrixS of orderp
are just the Pearson correlation between various sp
points. The eigenfunctions ofS are called the empirical or
thogonal functions since they form a complete set of
thogonal basis to represent the data matrixZ. In the geophys-
ical setting, the EOFs can be plotted as contour maps
associating each component with its corresponding spa
location as shown in Fig. 1. If the eigenvalue correspond
to the mth eigenmode islm , then the percentage var
f
fic
nts
c-
-
t-
FIG. 2. Dominant EOF from the analysis o
wind-stress vectors in the equatorial Paci
ocean. This eigenmode predominantly represe
the annual fluctuations in trade winds and a
counts for 38% of the variability. It has been ro
tated by 45° to obtain physically meaningful pa
tern.
2-2
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STATISTICS OF ATMOSPHERIC CORRELATIONS PHYSICAL REVIEW E64 016102
ance associated with the mode is given byvm

5(lm /( i 51
p l i)100.0. Then, the dominant mode would co

respond to the EOF with the largest eigenvalue. In the
few decades, several variants of this basic EOF techn
have been used to suit varied requirements@9#. We will show
that the spectrum ofS displays random-matrix-type spectr
statistics.

III. EIGENVALUE STATISTICS

A. Data and analysis

Computing reliable correlation matrices depends on
availability of a sufficiently long time series of data. Gene
ally, the requirement is to haven@p, as otherwise, the com
puted covariances could be noisy and correlations could
regarded as random. Reliable records of monthly avera
for weather and climate parameters of interest exist for
last 50 years. In our study, we use both the daily as wel
the monthly averaged data available from National Cen
for Environmental Prediction~NCEP! reanalysis archives
@16#. Further in this direction, we study three cases:~i!
monthly mean sea-level pressure~SLP! for the Atlantic do-
main (0°290° N,120° W230° E), from 1948 to 1999
~ii ! monthly mean global sea surface temperatures~SST!
@17#, and~iii ! surface level pseudo-wind-stress vectors in
equatorial Pacific ocean (20° S220° N,130° E
270° W). The first case identifies many northern hem
sphere teleconnections, and its climatic effects and EOF
pects are documented@12#. Wind stress is an important quan
tity in studies on coupled ocean-atmosphere models
simulate the air-sea interaction and the feedback mechan
The pseudo-wind-stress is defined asW5A(u21v2)(u
1 iv), where u and v are the zonal and meridional win
components and this leads to a complex correlation ma
Its EOFs exhibit signatures of the mean annual signal an
Niño oscillations@18#. Note that the eigenmodes of the com
plex correlation matrix are determined only up to a comp
factor of unit modulus. This allows the freedom to choos
phase angle to rotate the eigenvectors.

The atmospheric data is on an uniform spatial grid of 2
along both the latitude and longitude. To ensure thatn.p in
the calculations with monthly mean data, the spatial reso
tion was reduced to 5°. Thus, for the case~i! of monthly
mean SLP correlations,p5434 andn5624. In the case~iii !
of monthly mean wind-stress analysis over equatorial Pac
ocean, the land points were removed from the calculati
using land-sea mask and it results inp5494 andn5624.
Since a longer time series of monthly mean data was
available, another experiment was performed with daily
eraged time series with much improved ratio forr 5n/p in
the range 2.5–3.5. The required means and anomalies
computed from which, matrices of orders ranging from 5
to 1200 are constructed and diagonalized using stan
LAPACK routines@19#.

First we look at the structure of eigenvalue density. T
integrated level densityN(l)5(Q(l2l i) can be written as
N(l)'Navg(l)1Nf l(l), a sum of the average part and th
fluctuating part. The eigenvaluesl i are unfolded by fitting
01610
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an empirical function to the average part of the integra
level density such that the unfolded eigenvaluese i
5Navg(l i) have mean spacing unity@20#. All the analyses
reported further were performed one i . As Fig. 3 shows, for
empirical correlation matrices, the spectrum is dense at
lower end. This is typical of the spectrum of correlation m
trices formed from the data matrixZ through Eq.~2.1! @21#.
In contrast to this, for a generic quantum system, the le
density increases with energy and is dense at the higher
of the spectrum.

B. Level spacing distribution

One of the celebrated results of the random matrix the
is the nearest-neighbor eigenvalue spacing distribution,
the distribution ofsi5e i 112e i . It gives the probability for
finding the neighboring levels with a given spacings. In the
context of this work, the Gaussian orthogonal ensem
~GOE! is appropriate for the mean sea-level pressure co
lations and the Gaussian unitary ensemble~GUE! is appro-
priate for pseudo-wind-stress vectors. The spectra of th
classes exhibit universal fluctuation properties and the sp
ing distributions are given by@22#,

PGOE~s!5
p

2
s expS 2

p

4
s2D , ~3.1!

PGUE~s!5
32

p2
s2 expS 2

4

p
s2D . ~3.2!

The analytical forms above indicate level repulsion, a te
dency against clustering, as evident from low probability
small spacings. The level repulsion is linear for GOE a
quadratic for GUE.

FIG. 3. The integrated level density, in the form of a stairca
for the eigenvalues of the monthly mean SLP correlation mat
The solid line is the empirical curve that fits the level density w
dark circles denoting the location of eigenvalues. The inset is m
nified view of a part of the curve.
2-3
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In Fig. 4, we show the spacing distribution for the eige
values of the correlation matrix of the monthly mean SL
The inset in this figure shows the cumulative spacing dis
bution for the spectra obtained from the analysis of mont
and daily averaged SLP data. We observe a general ag
ment with the RMT predictions. In Fig. 5, the spectra fro
the monthly mean wind-stress correlation data is shown
the spacingss were uncorrelated then we would expect
Poisson distributionP(s)5exp(2s) @20#. In all the cases we
studied, the empirical histograms do not follow the Poiss
curves at all. As would be expected, a better agreement

FIG. 4. Eigenvalue spacing distribution for the monthly me
SLP correlation matrix. The solid curve is the GOE prediction. T
inset shows the cumulative distribution for the monthly and da
averaged correlation matrix.

FIG. 5. Eigenvalue spacing distribution for the monthly me
wind-stress correlation matrix. The solid curve is the GUE pred
tion. The inset shows the cumulative distribution for the mont
and daily averaged correlation matrix.
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tween the theoretical curves and the empirical distribution
observed in the analysis of daily averaged data, in both
cases of SLP and pseudo-wind-stress correlations, since
provide about 1000 eigenvalues for the statistics. For
stance, a Kolmogorov-Smirnov test at 65% confidence le
could not reject the hypothesis that GOE is the correct d
tribution for the eigenvalues of the monthly mean SLP c
relation matrix, whereas a similar test for the daily averag
SLP data could not reject the hypothesis at 99% confide
level. The monthly mean SST correlation matrix analy
~not shown here! also supports RMT spacing distribution
The eigenvalue spacing distribution for the equatorial Pac
pseudo-wind-stress vector correlation matrix also indicate
good agreement with the GUE prediction given by Eq.~3.2!
~see Fig. 5!.

C. Long-range correlations

Beyond the nearest-neighbor spacing distribution,
study the long-range correlations. We compute the follow
spectral fluctuation measures@20# that are based on the two
point correlation function.

~a! The spectral rigidity, the so-calledD3 statistic, mea-
sures the least-square deviation of the spectral staircase
tion N(e) from the straight line of best fit for a finite interva
L of the spectrum,

D3~L,L8!5
1

L
min
a,b

E
L8

L81L
@N~e!2ae2b#2 de, ~3.3!

wherea andb are obtained from a least-squares fit. Avera
over several choices ofL8 gives the spectral rigidityD3(L).

~b! The number varianceS2 is also a function of two-
point correlation function. Letn(L,L8) be the number of
eigenvalues in the spectral intervalL. Then, for a choice of
L8, S2 is given by

S2~L,L8!5n~L,L8!22L2 ~3.4!

Averaging n(L,L8)2 over L8 gives the number varianc
S2(L). The asymptotic results for largeL, from random ma-
trix considerations, is given by@22#

D3~L !5
1

np2
ln~L !1gn , ~3.5!

S2~L !5
2

np2
ln~L !1hn , ~3.6!

wheren51,2 corresponds to GOE and GUE, respectivelyg
andh are also dependent on the ensemble.

Figure 6 shows theD3(L) statistic for the SLP and wind
stress correlation matrix spectrum, computed using
method given by Bohigas and Giannoni@20#. Generally, a
good agreement is observed with the RMT predictions. In
the cases, for smallL the agreement is good and small d
viations begin to be seen for larger values indicating a p
sible breakdown of universality. In general, this should in
cate system specific features that cannot be modeled

e

-
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STATISTICS OF ATMOSPHERIC CORRELATIONS PHYSICAL REVIEW E64 016102
assumptions based on randomness. Once again, we n
that the correlation matrix spectra obtained from daily d
show better agreement with RMT predictions, primarily d
to larger orders of correlation matrix involved and hen
more eigenvalues for the analysis. Figure 7 shows the n
ber varianceS2(L) for all the cases. We observe a fair
good agreement with RMT predictions. The results for S
and SST correlations are in broad agreement with the sim
analysis performed on the financial correlation matrices@7#,

FIG. 6. D3(L) for spectra from the correlation matrix of~a!
wind stress and~b! SLP. The solid curve in~a! is GUE prediction
and in ~b! the GOE prediction. The circles are for the correlati
matrix obtained from daily averaged data and triangles represen
matrix obtained from the monthly mean data.

FIG. 7. S2(L) for spectra from the correlation matrix of~a!
wind stress and~b! SLP. The circles are for the correlation matr
obtained from daily averaged data and triangles represent the m
obtained from the monthly mean data.
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both of which are modeled by the orthogonal ensemble
RMT. This, in itself, demonstrates the breadth of applic
tions of RMT.

IV. STATISTICS OF EOF COMPONENTS

With the eigenvalue statistics, it is not straightforward
obtain detailed system specific information, unless there
significant deviations from random matrix predictions. T
distribution of eigenvector components, on the other ha
reveals fine-grained information at the level of every eige
vector. In this section, we show that almost all the EO
follow the RMT distribution. However, a few EOFs tha
have physical significance, like the ones shown in Figs
and 2, deviate strongly from RMT. Broadly, the variabili
captured by an EOF is seen to be reflected in its devia
from RMT predictions.

Let aj
m be thej th component of themth eigenvector. As-

suming that these components are Gaussian random
ables with the norm being their only characteristic, it can
shown that the distribution ofr 5uaj

mu2, in the limit when the
matrix dimension is large, is given by the special cases of
x2 distribution @23#,

Pn~r !5S n

2^r & D
n/2 r n/221

GS n

2D expS 2rn

2^r & D . ~4.1!

The casen51 can be identified with GOE and gives th
well-known Porter-Thomas~PT! distribution. The distribu-
tion of complex eigenvectors correspond to the GUE cl
with n52. The general understanding is that if the eigenv
tors are sufficiently irregular in some sense, then its com
nents arex2 distributed and deviations occur if they sho
some symptoms of regularity.

In further analysis, we will use the modulus square of t
EOF components, i.e.,r 5uaj

mu2, normalized to unit mean
For the monthly mean SLP correlation matrix, Fig. 8 sho
the cumulative distribution of EOF components. Since EO
form an optimal basis to represent the data, most of the v
ability is carried by a small number of EOFs; in this ca
about 91% of the variability is captured by just 12 domina
EOFs. The rest 9% is accounted for by the bulk of the r
422 EOFs. The central result of this section is that the b
of these EOFs, accounting for a small fraction of the va
ability, follow the cumulative PT distribution given byI (r )
5erf(Ar /2), where erf is the standard error function. Th
strengthens the conclusion that the empirical correlation
trices can be modeled as a random matrix. As an exam
from a large number of such EOFs, the distribution of t
294th EOF is shown~denoted by dark circles! in Fig. 8 and
it practically falls on the PT curve. We observed that t
distribution of all such EOFs follow RMT and this is als
confirmed by a Kolmogorov-Smirnov test.

However, interesting cases arise from a small numbe
dominant EOFs that deviate strongly from RMT prediction
The first two dominant EOFs shown in Fig. 8~as dotted
lines!, representing about 30% and 22% of the entire va
ability, show significant deviations from the cumulative P

he

rix
2-5



o
tic
F
e
S

as
e

Fs
es
tio
a

th
m
u-
y
in

oo
s

.
io
e
w
le
ind
to

ni
lo

t
t-
a

lo-

rst,
lar
s

s.
r-

Fs
the
ran-
w

igs.

re
tri-
the

ilar
e,
art
de-

ibu-
of
om

LP
bu
F
e-
ow
F

e
dic-
Fs
nt
he

s

M. S. SANTHANAM AND PRABIR K. PATRA PHYSICAL REVIEW E64 016102
curve. The spatial structure of both these eigenmodes, sh
in Fig. 1, jointly captures the essence of the North Atlan
pattern. This scenario, of the most dominant of the EO
deviating from the PT distribution and lesser significant on
showing agreement with it, is repeated in the analysis of S
~not shown here! and daily averaged SLP correlations
well. At this point, we stress that these deviations are exc
tions that arise in about 1% of the EOFs.

Figure 9 shows the cumulative distribution for the EO
obtained from the analysis of the monthly mean wind-str
correlation. Note that in this case, the appropriate predic
follows the unitary ensemble since the EOF components
complex. The dominant 20 EOFs explain nearly 90% of
variability in the wind-stress data. The rest of the large nu
ber ~about 400! of EOFs show good agreement with the c
mulative GUE curve for eigenvector distribution given b
I (r )512exp(2r). One such case, 370th EOF, is shown
Fig. 9 denoted by dark circles. In general, EOFs show g
agreement with RMT except for the few dominant EOF
The dominant EOF, whose spatial pattern is shown in Fig
represents the mean annual Pacific trade-wind fluctuat
and explains 38% of the variability and shows pronounc
deviation from the cumulative GUE curve. The next fe
dominant EOFs also exhibit significant deviations. Leg
@18# has performed EOF analysis on the Pacific ocean w
stress vectors and attributed physical significance to the
three dominant EOFs. Thus, EOFs that have physical sig
cance, cannot be modeled by RMT ensembles. An ana
with quantum eigenstates seems inevitable. Studies on
distribution of the eigenfunctions of low-disorder tigh
binding systems and chaotic quantum systems show th

FIG. 8. Cumulative distribution of EOF components for the S
correlation matrix. The solid curve is the Porter-Thomas distri
tion. The curve with dark circles is a sample from the bulk of EO
that follow PT distribution. The two curves with dotted lines corr
spond to the first-two dominant EOFs, whose spatial map is sh
in Fig. 1. The long-dashed curves are the next few dominant EO
The curve with small dashes~marked as 45! is the 45th EOF that
surprisingly deviates from the PT curve~see text!.
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small fraction of the eigenstates, which display quantum
calization, deviate from random matrix predictions@24#,
while most others show RMT-like behavior.

There are two interesting observations in this study. Fi
we notice that there are few EOFs, occurring at irregu
intervals, which do not carry much of a significance in term
of the variability but deviate strongly from RMT prediction
It is not immediately clear if they carry any significant info
mation. Second, a surprising observation is that the EO
corresponding to first few eigenvalues at the lower end of
spectrum, most often regarded as least dominant and
dom, devoid of any system specific information, sho
marked deviations from RMT~see also Ref.@7#!. One such
example each for the GOE and GUE cases is shown in F
8 and 9.

V. DISCUSSION AND CONCLUSION

This work shows that the random matrix predictions a
of considerable interest in the study of the correlation ma
ces that arise in atmospheric sciences. Previous work on
correlations of stock market fluctuations has come to sim
conclusion@7#. This is despite the following basic differenc
RMT assumes that the quantum Hamiltonian matrix is p
of an ensemble of random matrices whose entries are in
pendent random numbers drawn from a Gaussian distr
tion. In the correlation matrix formalism, the elements
data matrix are independent Gaussian distributed rand
numbers. Then, the correlation matrix in Eq.~2.1! follows
the Wishart structure@25#, a form of generalizedx2 distribu-
tion.

-
s

n
s.

FIG. 9. Cumulative distribution of EOF components for th
pseudo-wind-stress correlations. The solid curve is the GUE pre
tion. The curve with dark circles is a sample from the bulk of EO
that follow GUE. The dotted curves are for the first two domina
EOFs; the spatial map of dominant EOF is shown in Fig. 2. T
curve with small dashes~marked as 4! is the 4th EOF that deviate
significantly from the GUE curve.
2-6
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STATISTICS OF ATMOSPHERIC CORRELATIONS PHYSICAL REVIEW E64 016102
In the application of EOFs in various disciplines, an im
portant question is the truncation of EOFs while opting fo
low-dimensional representation for a given data matrix. T
earlier approaches to this problem were based on Mo
Carlo techniques or asymptotic theories@9,11#. It would be
interesting to evolve a truncation criteria, for using EOFs
empirical basis, from random matrix techniques since
results here suggest that RMT could be potentially applie
separate the random modes from the physically signific
modes of the correlation matrix.

Even as we have documented evidence for RMT-like
havior from the atmospheric correlation matrices, there
also a need to look at the limits of RMT description. F
instance, a correlation matrix that shows perfect correla
will obviously not behave like RMT. Can correlation matr
spectra display Poisson spacing distribution? Such limits
RMT in the context of the correlation matrix is yet to b
explored.
s.

et
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In summary, we have analyzed atmospheric correlat
matrices from the perspective of the random matrix theo
The central result of this work is that they can be modeled
random matrices chosen from an appropriate RMT
semble. The eigenvalue statistics exhibits short- and lo
range RMT-type behavior. Most of the eigenmodes also
low the RMT-type eigenvector distribution. Few domina
eigenmodes that have physical significance deviate fr
RMT predictions. We have verified our conclusions with e
amples of correlation matrices that belong to GOE and G
universality classes of the random matrix theory.
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